21,100 research outputs found

    A Levinson theorem for scattering from a Bose-Einstein condensate

    Full text link
    A relation between the number of bound collective excitations of an atomic Bose-Einstein condensate and the phase shift of elastically scattered atoms is derived. Within the Bogoliubov model of a weakly interacting Bose gas this relation is exact and generalises Levinson's theorem. Specific features of the Bogoliubov model such as complex-energy and continuum bound states are discussed and a numerical example is given.Comment: 4 pages, 3 figure

    Collisions of solitons and vortex rings in cylindrical Bose-Einstein condensates

    Full text link
    Interactions of solitary waves in a cylindrically confined Bose-Einstein condensate are investigated by simulating their head-on collisions. Slow vortex rings and fast solitons are found to collide elastically contrary to the situation in the three-dimensional homogeneous Bose gas. Strongly inelastic collisions are absent for low density condensates but occur at higher densities for intermediate velocities. The scattering behaviour is rationalised by use of dispersion diagrams. During inelastic collisions, spherical shell-like structures of low density are formed and they eventually decay into depletion droplets with solitary wave features. The relation to similar shells observed in a recent experiment [Ginsberg et al. Phys Rev. Lett. 94, 040403 (2005)] is discussed

    The Distance and Age of the SNR Kes 73 and AXP 1E 1841-045

    Full text link
    We provide a new distance estimate to the supernova remnant (SNR) Kes 73 and its associated anomalous X-ray pulsar (AXP) 1E 1841-045. 21 cm HI images and HI absorption/ emission spectra from new VLA observations, and 13CO emission spectra of Kes 73 and two adjacent compact HII regions (G27.276+0.148 and G27.491+0.189) are analyzed. The HI images show prominent absorption features associated with Kes 73 and the HII regions. The absorption appears up to the tangent point velocity giving a lower distance limit to Kes 73 of 7.5 kpc, which has previously been given as the upper limit. Also, G27.276+0.148 and G27.491+0.189 are at the far kinematic distances of their radio recombination line velocities. There is prominent HI emission in the range 80--90 km/s for all three objects. The two HII regions show HI absorption at ~ 84 km/s, but there is no absorption in the Kes 73 absorption spectrum. This implies an upper distance limit of ~ 9.8 kpc to Kes 73. This corrected larger distance to Kes 73/ AXP 1E 1841-045 system leads to a refined age of the SNR of 500 to 1000 yr, and a ~ 50% larger AXP X-ray luminosity.Comment: 10 pages, 2 figures, ApJ, dol:10.1086/"529120
    • …
    corecore